مرجع دانلود فایل 30

مرکز دانلود فایل های کمیاب

مرجع دانلود فایل 30

مرکز دانلود فایل های کمیاب

  • ۰
  • ۰



فصل اول

 

برهم کنش یونها در محلول و ترمودینامیک آنها


مقدمه

گروه بزرگی از محلولها رسانای الکتریسته هستند مانند محلول اسیدها،بازها ونمک ها در آب ،به این نوع محلولها ،محلولهای الکترولیت و به اجسام حل شده در آنها الکترولیت می گویند.

یک محلول الکترولیت از راه حل شدن یک ترکیب یونی یا یک ترکیب کئووالانسی قطبی در یک حلال با ثابت دی الکتریک بالا حاصل می شود.

یک الکترولیت ممکن است قوی و یا ضعیف باشد، الکترولیت های قوی کاملاً بصورت ذرات با بارهای مخالف در می آیند و تفکیک تقریبا کامل است. از طرف دیگر الکترولیتهای ضعیف در محلول به طور جزئی یونیده شده و بر طبق قانون شناخته شده استوالد[1]، میزان یونش با افزایش رقت زیاد می گردد.]1و5[.

اگر چه الکترولیت های قوی به طور کامل یونش پیدا می کنند، لیکن یونهای آنها برای حرکت مستقل از یکدیگر از میان محلول ، به جز در رقتهای بی نهایت، آزاد نمی باشند.

حرکت یونها نسبت به یکدیگر به علت حرکت گرمایی نسبتاً شدید، بطور اتفاقی صورت می گیرد، به هر حال حتی در این شرایط نیز، نیروهای کولمبی تاثیر خود را تا حدودی وارد می نمایند که نتیجة آن در یک میانگین زمانی ، احاطه شدن هر کاتیون و آنیون به وسیله یک اتمسفر یونی حاوی نسبتاً زیادی از یونهایی است که نسبت به یون مرکزی، حامل بارهایی با علامت مخالف می باشند.

قوانین الکترواستاتیک وجود نیروهای جاذبه و دافعة قابل ملاحظه ای را بین بارهای همنام و ناهمنام طلب می نماید. چنین تاثیرات متقابل، تا حدود زیادی به رفتار غیرایده آل قابل مشاهده محلولهای الکترولیتی مربوط می گردد]5[.

 

1-1 ترمودینامیک محلولهای الکترولیت

خواص ترمودینامیکی محلولهای الکترولیت مانند محلولهای غیر الکترولیت برحسب پتانسیل های شیمیایی وفعالیتها مورد بحث قرار می گیرد.

به هر حال یونها به خاطر بارهای الکتریکی خود شدیداً بر هم اثر نموده و انحرافات از حالت ایده ال حتی در غلظتهای بسیار کم مهم است]2[.

در ادامه به بررسی رفتار غیرایده آل محلولهای الکترولیت و توضیح در مورد بعضی پارامترها و توابع محلولهای الکترولیت می پردازیم.

1-1-1 رفتار غیر ایده آل محلولهای الکترولیت

در محلول یک الکترولیت، برهم کنش های گوناگونی بین اجزای محلول برقرار است، مهمترین آنها عبارتند از برهم کنش« یون – یون » ، « یون – حلال » ، « حلال- حلال ».

این برهم کنش ها موجب می شوند تا محلولهای یونی دارای رفتار غیره ایده آل باشند، به همین دلیل توابع ترمودینامیکی تشکیل محلولهای یونی کاملاً متفاوت از توابع تشکیل محلولهای ایده آل است.

در یک محلول یونی، هر یون آبپوشیده با مولکولهای آب مجاورش بر هم کنش جاذبه برقرار می کند. از سوی دیگر، یک کاتیون آبپوشیده و یک آنیون آبپوشیده یکدیگر را جذب می کنند، در حالیکه یونهای هم بار یکدیگر را دفع می نمایند.

علاوه بر آن ، در شرایطی که یونش الکترولیت در محلول کامل نباشد، بایستی به برهم کنش های مولکول الکترولیت آبپوشیده با سایر اجزاء در محلول نیز توجه شود. گذشته از آن ، لازم است جنبش های گرمایی گونه های مختلف در محلول مدنظر قرار گیرد.

همانطور که اشاره شد مجموع این عوامل باعث می شوند تا محلولهای یونی از حالت ایده آل بسیار دور باشند]1[.

1-1-2 فعالیت یونها در محلول الکترولیت

در مورد غیرالکترولیت ها ، فعالیت حل شونده در محلول رقیق را تقریباً برابر مولاریته فرض می کنند ( بدین معنی ک).

با وجود این در محلولهای یونی اثرات متقابل بین یونها آنقدر قوی است که از این تقریب فقط می توان در محلولهای بسیار رقیق ( محلولهایی با غلظت کمتر از مولار)
استفاده کرد ]2[.

بنابراین بهتر است برای توجیه رفتار یون برای تعیین خواص محلول، عامل دیگری غیر از غلظت را به کار ببریم. کمیتی که به جای غلظت به کار برده می شود فعالیت یون[2] نام دارد که در آن اثر برهم کنش های یونی با محیط در نظر گرفته شده است. رابطه فعالیت و غلظت را می توان بصورت زیر نشان داد:

(1-1)                                          

که در آنفعالیت یون  ضریب فعالیت[3] نامیده می شود. ضریبی است که تفاوت بین فعالیت و غلظت را مشخص می کند و مقیاسی از واکنشهای بین یونی می باشد]6[.

1-1-3 ضریب فعالیت یونها در محلول الکترولیتپیدا کرده اند که بر هم کنش‌های بین یونی با  غلظت تغییر می کند بنابراین باید انتظار داشت که ضریب فعالیت با غلظت تغییر کند و همانطوری که می توان انتظار داشت در غلظت صفر، برهم کنش های بین یونی صفر می شود و می توان ضریب فعالیت را یک گرفت که در این صورت غلظت و فعالیت برابر

می شوند ]6[.

 

شکل (1-1). بستگی لگاریتم ضریب فعالیت چند الکترولیت با غلظت

ضریب فعالیت یک عامل تصحیح برای نیروهای بین مولکولی است، بدین معنی که ضریب فعالیت، یک بیان کمی خاصیت های محلول است و وقتی از حالت ایده آل به سمت حالت واقعی می رویم باید تابعی از انرژی برهم کنش ذرات باشد ]40[

به دلیل نیروهای دوربرد قوی بین یونها در محلولهای الکترولیت، استفاده از ضریب فعالیت حتی برای محلولهای خیلی رقیق نیز ضروری می باشد]10[.

ضریب فعالیت برای یک گونه یونی تنها ،نمی تواند تعیین شود چون در یک محلول یک نوع یون تنها وجود ندارد به این دلیل بجای ضریب فعالیت هر یون، میانگین ضریب فعالی[4]  معرفی می شود که رابطه آن با ضریب فعالیت تک تک یونها بصورت زیر است:

(1-2)                                    

در این رابطهضریب استوکیومتری یون مثبت وضریب استوکیومتری یون منفی می باشد ]4[.

هنگامی که یک الکترولیت کاملاً تفکیک شده باشد مقادیبدست آمده مستقیماً به خواص یونها اشاره دارد، برای مثال در رقت های بالا،انحرافات جزئی از رفتار ایده آل که به نیروهای دوربرد بین یونها بستگی دارد، قابل انتظار است]11[.

1-1-4 قدرت یونی [5]

به منظور نشان دادن تغییر مقدار ضریب فعالیت با غلظت، مخصوصاً در مواردی که یک و یا چند الکترولیت به مقدار اضافه نیز وجود دارند کمیت جدیدی به نام قدرت یونی توسط لوئیس[6] و رندال[7] پیشنهاد شد که قیاسی از شدت میدان الکتریکی به علت حضور یونها در محلول می باشد]7[.

الکترولیت هایی که دارای یونهای با بارچندتایی هستند در مقایسه با الکترولیتهایی که فقط یونهای با بار تک دارند آثار بیشتری بر ضرایب فعالیت یونها خواهند داشت. لوئیس برای بیان غلظت الکترولیت ها به طریقی که  این موضوع را به حساب آورد قدرت یونی، I، را که توسط معادله زیر تعریف می شود معرفی کرد.

(1-3)                                       

در این رابطه ظرفیت یون ومولاریته یون می باشد.

تاثیر بیشتر یونهای با بار زیادتر در کاهش ضریب فعالیت به علت ضرب شدن غلظت یونها در مربع بارهایشان است]3[.

 

 
   

 

شکل (2-1) بستگی لگاریتم ضریب فعالیت چند الکترولیت با قدرت یونی

1-1-5 پتانسیل شیمیایی محلولهای الکترولیت

پتانسیل های شیمیایی[8]  خواص کلیدی ترمودینامیکی خصوصیات ترمودینامیکی هستند لذا همه خصوصیات ترمودینامیکی دیگر، از این خاصیت مشتق می شوند]10[.

نحوه محاسبه پتانسیل شیمیایی یک محلول الکترولیت به صورت زیر می باشد.

اگر تغییر انرژی گیبس سیستم دارای مول حلال و مولاریته برای کاتیون و برای آنیون و برای یک افزایش بی نهایت جزئی چنین باشد:

(1-4)                                 

و به ترتیب پتانسیل شیمیایی کاتیون و آنیون حاصل از حل شدن یک الکترولیت در حلال مورد نظر می باشد.

در یک محلول، پتانسیل شیمیایی یونها را نمی توان جداگانه تعیین نمود حال اگر یک الکترولیت قوی بصورت مدنظر باشد خواهیم داشت :

(1-5)                           

که در نتیجه :

(1-6)                                  

وبه ترتیب ضرایب استوکیومتری کاتیون و آنیون می باشند.

پتانسیل شیمیایی کاتیون و آنیون توسط روابط زیر داده می شوند :

(1-7)                                 

(1-8)                                 

در این روابط ،وبه ترتیب پتانسیل شیمیایی کاتیون و آنیون در حالت استاندارد، و ضرایب فعالیت کاتیون و آنیون هستند.

هر گاه معادلات (1-7) و (1-8) در معادله (1-6) جایگزین شوند خواهیم داشت:

(1-9)                    

برای بدست آوردن جمله ای متناسب با مولاریته، ، الکترولیت برحسب جمله لگاریتمی، میانگین مولاریته یونی ، ، بصورت زیر تعریف می شود :

(1-10)                           

در این رابطهمی باشد.

آنگاه به کمک معادله (1-10) و معادله (1-2) خواهیم داشت:

(1-11)                                 

پتانسیل شیمیایی استاندارد الکترولیت ، عبارت است از پتانسیل شیمیایی محلول با فعالیت واحد بر مبنای مقیاس مولاریته است ]3[.



[1] . Ostwald Law

[2] . Ion activity

[3] . activity coefficient

[4] . mean activity coefficeint

[5] . Ionic Strength

[6] . Lewis

[7] . Randall

[8] . chemical potentials

 



پرداخت و دانلود


بلافاصله پس از پرداخت ، لینک دانلود به شما نمایش داده می شود و همچنین یک نسخه نیز برای شما ایمیل می شود .



فرمت فایل: doc 


حجم فایل: 600 کیلوبایت 


تعداد صفحات فایل: 82 






کلمات کلیدی : مطالعه تجمع یونی با نگرش ترمودینامیکی (تجربی – نظری) , پروژهایی در مورد مطالعه تجمع یونی با نگرش ترمودینامیکی مقالاتی در مورد مطالعه تجمع یونی با نگرش ترمودینامیکی مطالبی در مورد مطالعه تجمع یونی با نگرش ترمودینامیکی

  • ۹۵/۰۸/۱۱
  • مدیر مدیر

نظرات (۰)

هیچ نظری هنوز ثبت نشده است

ارسال نظر

ارسال نظر آزاد است، اما اگر قبلا در بیان ثبت نام کرده اید می توانید ابتدا وارد شوید.
شما میتوانید از این تگهای html استفاده کنید:
<b> یا <strong>، <em> یا <i>، <u>، <strike> یا <s>، <sup>، <sub>، <blockquote>، <code>، <pre>، <hr>، <br>، <p>، <a href="" title="">، <span style="">، <div align="">
تجدید کد امنیتی